LT

1) Cho x,y,z là các số thực dương và xyz = 1.

Tìm giá trị lớn nhất của biểu thức: \(\frac{2}{2x^2+y^2+3}+\frac{2}{2y^2+z^2+3}+\frac{2}{2z^2+x^2+3}\)

2)ghpt \(\left\{\begin{matrix}3x+xy=12\\x^2+y^2+x+7y=20\end{matrix}\right.\)

BD
26 tháng 2 2017 lúc 14:11

1) Ta có : \(2x^2+y^2+3=\left(x^2+y^2\right)+\left(x^2+1\right)+2\)

Áp dụng bất đẳng thức cô si ta có: \(x^2+y^2\ge2xy,x^2+1\ge2x\)

Nên :\(2x^2+y^2+3\ge2\left(xy+x+1\right)\)

\(\Rightarrow\frac{2}{2x^2+y^2+3}\le\frac{2}{2\left(xy+x+1\right)}=\frac{1}{xy+x+1}\)

Chứng minh tương tự ta có :\(\frac{2}{2y^2+z^2+3}\le\frac{1}{yz+y+1}\)

\(\frac{2}{2z^2+x^2+3}\le\frac{1}{xz+z+1}\)

Do đó \(\frac{2}{2x^2+y^2+3}+\frac{2}{2y^2+z^2+3}+\frac{2}{2z^2+x^2+3}\le\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{xz+z+1}\)

Ta sẽ chứng minh:\(\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{xz+z+1}=1\)

Thật vậy:VT=\(\frac{xyz}{xy+x+xyz}+\frac{1}{yz+y+1}+\frac{y}{xyz+yz+y}\left(v\text{ì }xyz=1\right)\)

=\(\frac{yz}{yz+y+1}+\frac{1}{yz+y+1}+\frac{y}{yz+y+1}=\frac{yz+y+1}{yz+y+1}=1\)

Dó đó :\(\frac{2}{2x^2+y^2+3}+\frac{2}{2y^2+z^2+3}+\frac{2}{2z^2+x^2+3}\le1\)

Dấu "=" xảy ra khi:x=y=z=1

Bình luận (0)
H24
26 tháng 2 2017 lúc 21:38

câu 2:

HPT\(\Leftrightarrow\left\{\begin{matrix}6x+2xy=24\left(1\right)\\x^2+y^2+7y=20\left(2\right)\end{matrix}\right.\)

cộng vế với vế 2 pt (1) và (2):

\(x^2+y^2+2xy+7x+7y=44\)\(\Leftrightarrow\left(x+y\right)^2+7\left(x+y\right)-44=0\)

\(\Leftrightarrow\left(x+y-4\right)\left(x+y+11\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x+y=4\\x+y=-11\end{matrix}\right.\)

với x+y=4 <=> x=4-y.thế vào pt (1):3(4-y)+(4-y)y=12

\(\Leftrightarrow12-3y+4y-y^2=12\Leftrightarrow y^2-y=0\)

\(\Leftrightarrow\left[\begin{matrix}y=0\\y=1\end{matrix}\right.\)

y=0 => x=4

y=1=> x=3

tương tự với TH còn lại

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết
MH
Xem chi tiết
LT
Xem chi tiết