Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

HP

Cho x,y,z > 0. Tìm GTLN của: \(A=\dfrac{\sqrt{yz}}{x+2\sqrt{yz}}+\dfrac{\sqrt{xz}}{y+\sqrt{xz}}+\dfrac{\sqrt{xy}}{z+\sqrt{xy}}\)

AH
20 tháng 11 2018 lúc 0:55

Lời giải:

Để cho gọn đặt \((\sqrt{x}; \sqrt{y}; \sqrt{z})=(a,b,c)\) với \(a,b,c>0\)

Khi đó:

\(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)

\(=\frac{1}{2}(\frac{2bc}{a^2+2bc}+\frac{2ac}{b^2+2ac}+\frac{2ab}{c^2+2ab})\)

\(=\frac{1}{2}\left(1-\frac{a^2}{a^2+2bc}+1-\frac{b^2}{b^2+2ac}+1-\frac{c^2}{c^2+2ab}\right)\)

\(=\frac{3}{2}-\frac{1}{2}\underbrace{\left(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\right)}_{M}\)

Áp dụng BĐT Cauchy-Schwarz:

\(M\geq \frac{(a+b+c)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)

\(\Rightarrow A=\frac{3}{2}-\frac{1}{2}M\leq \frac{3}{2}-\frac{1}{2}=1\)

Vậy \(A_{\max}=1\Leftrightarrow a=b=c\Leftrightarrow x=y=z\)

Bình luận (0)

Các câu hỏi tương tự
HP
Xem chi tiết
CT
Xem chi tiết
TH
Xem chi tiết
LB
Xem chi tiết
NT
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết