Cho x,y,z > 0. Tìm GTLN của: \(A=\dfrac{\sqrt{yz}}{x+2\sqrt{yz}}+\dfrac{\sqrt{xz}}{y+\sqrt{xz}}+\dfrac{\sqrt{xy}}{z+\sqrt{xy}}\)
tìm 3 số thực dương x;y;z thỏa mãn \(\dfrac{2}{\sqrt{x}+2\sqrt{y}+3\sqrt{z}}-\dfrac{1}{2\sqrt{xy}+6\sqrt{yz}+3\sqrt{zx}}=\dfrac{1}{3}\)
Cho x,y là các số dương. Tìm GTLN của:\(A=\dfrac{\sqrt{yz}}{x+\sqrt{yz}}+\dfrac{\sqrt{xz}}{y+\sqrt{xz}}+\dfrac{\sqrt{xy}}{z+\sqrt{xy}}\)
Bài 1: Cho A=\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)với x≥0; y≥0; x≠y
a) Rút gọn A
b) Chứng minh A≥0
Bài 2:Cho A= \(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
với x>0; x≠1
a) Rút gọn A
b)Tìm x để A=6
B= (\(\dfrac{2x+1}{x\sqrt{x}-1}\)- \(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)) * (\(\dfrac{1+\left(\sqrt{x}\right)^3}{1+\sqrt{x}}\)-\(\sqrt{x}\)) (đkxđ : x lớn hơn hoặc bằng 0, x khác 1)
a) Rút gọn B
b) Tính B khi x = 7 + \(2\sqrt{6}\)
c) Tìm x để B = 3
Giúp tớ đi các bạn cute mai tớ cần rồi
Cho 3 số dương x,y,z thỏa mãn :
\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}=3\sqrt{xyz}\) . Tính giá trị biểu thức:
A=\(\left(1+\dfrac{\sqrt{x}}{\sqrt{y}}\right)\left(1+\dfrac{\sqrt{y}}{\sqrt{z}}\right)\left(1+\dfrac{\sqrt{z}}{\sqrt{x}}\right)\)
tìm x,y,z biết
\(\sqrt{x+1}+\sqrt{y-3}+\sqrt{z-1}=\dfrac{1}{2}\left(x+y+z\right)\)
cm nếu \(\dfrac{x^2-yz}{x.\left(1-yz\right)}=\dfrac{y^2-xz}{y.\left(1-xz\right)}\),x≠y, xz≠1, yz≠1, x,y,z≠0 thì \(x+y+z=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
Rút gọn biểu thức
a) \(\dfrac{\sqrt{14-6\sqrt{5}}}{\sqrt{5}-3}\)
b)\(\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}\)
c)\(\dfrac{2+\sqrt{2}}{\sqrt{1,5+\sqrt{2}}}\)
d) \(\dfrac{\sqrt{20}}{\sqrt{5}}+\dfrac{\sqrt{117}}{\sqrt{13}}+\dfrac{\sqrt{272}}{\sqrt{17}}+\dfrac{\sqrt{105}}{\sqrt{2\dfrac{1}{7}}}\)
e)\(\dfrac{x\sqrt{x}-y\sqrt{y}}{x+\sqrt{xy}+y},x,y>0\)
f)\(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
g)\(\sqrt{\dfrac{2+a-2\sqrt{2a}}{a+3-2\sqrt{3a}}}v\text{ới}a>0,a\ne3\)