\(A\ge\frac{1}{2}\left(x+y\right)^2+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+y\right)^2+\frac{8}{\left(x+y\right)^2}\)
\(A\ge\frac{1}{2}\left(x+y\right)^2+\frac{1}{2\left(x+y\right)^2}+\frac{15}{2\left(x+y\right)^2}\ge1+\frac{15}{2}=\frac{17}{2}\)
\(A_{min}=\frac{17}{2}\) khi \(x=y=\frac{1}{2}\)