Violympic toán 9

PM

Cho x, y, z dương thỏa \(x+y+z=\frac{3}{2}\). Tìm min: \(P=\frac{\sqrt{x^2+xy+y^2}}{1+4xy}+\frac{\sqrt{z^2+zy+y^2}}{1+4zy}+\frac{\sqrt{x^2+xz+z^2}}{1+4xz}\)

NL
29 tháng 2 2020 lúc 0:29

\(x^2+xy+y^2=\left(x+y\right)^2-xy\ge\left(x+y\right)^2-\frac{1}{4}\left(x+y\right)^2=\frac{3}{4}\left(x+y\right)^2\)

\(\Rightarrow\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}}{2}\left(x+y\right)\)

Vậy:

\(P\ge\frac{\sqrt{3}}{2}\left[\frac{\left(x+y\right)^2}{1+4xy}+\frac{\left(y+z\right)^2}{1+4yz}+\frac{\left(z+x\right)^2}{1+4zx}\right]\)

\(P\ge\frac{\sqrt{3}}{2}\left[\frac{\left(2x+2y+2z\right)^2}{3+4\left(xy+yz+zx\right)}\right]\ge\frac{\sqrt{3}}{2}.\frac{9}{3+\frac{4}{3}\left(x+y+z\right)^2}=\frac{3\sqrt{3}}{4}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
HB
Xem chi tiết
HT
Xem chi tiết
KL
Xem chi tiết
AJ
Xem chi tiết
H24
Xem chi tiết
HM
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết