Violympic toán 9

KD

Cho x, y,z là các số dương thay đổi thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=2017\)

Tính giá trị lớn nhất của biểu thức: P=\(\frac{1}{2x+3y+3z}+\frac{1}{3x+2y+3z}+\frac{1}{3x+3y+2z}\)

NL
4 tháng 5 2020 lúc 15:54

\(\frac{1}{2x+3y+3z}=\frac{1}{\left(x+y\right)+\left(x+z\right)+\left(y+z\right)+\left(y+z\right)}\le\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+z}+\frac{2}{y+z}\right)\)

Tương tự:

\(\frac{1}{3x+2y+3z}\le\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{2}{x+z}\right)\) ; \(\frac{1}{3x+3y+2z}\le\frac{1}{16}\left(\frac{2}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)\)

Cộng vế với vế:

\(P\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{2017}{4}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{3}{4034}\)

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
AD
Xem chi tiết
KA
Xem chi tiết
TA
Xem chi tiết
MD
Xem chi tiết
QL
Xem chi tiết
KZ
Xem chi tiết