Violympic toán 9

NT

Cho các số dương x, y, z thoả mãn: \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\). Tìm giá trị lớn nhất của biểu thức: \(P=\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\)

NL
15 tháng 4 2019 lúc 17:19

Đặt \(\left\{{}\begin{matrix}x+y=a\\y+z=b\\x+z=c\end{matrix}\right.\) \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

\(P=\frac{1}{a+a+b+c}+\frac{1}{a+b+b+c}+\frac{1}{a+b+c+c}\)

\(\Rightarrow P\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow P\le\frac{1}{16}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3}{2}\)

\(\Rightarrow P_{max}=\frac{3}{2}\) khi \(a=b=c=\frac{1}{2}\Rightarrow x=y=z=\frac{1}{4}\)

Bình luận (0)

Các câu hỏi tương tự
KD
Xem chi tiết
NH
Xem chi tiết
NS
Xem chi tiết
AD
Xem chi tiết
KA
Xem chi tiết
TA
Xem chi tiết
MD
Xem chi tiết
KZ
Xem chi tiết
QL
Xem chi tiết