Bài 1: Căn bậc hai

HN

Cho x ; y thuộc R ; x^2 - y^2 = 4

Tìm Min : \(P=3x^4+2xy^3-12x^2+4xy\)

HN
11 tháng 7 2021 lúc 21:19

giúp e với ; plz 

Bình luận (0)
NL
11 tháng 7 2021 lúc 23:04

Bài này ko biết làm theo kiểu toán sơ cấp, nhìn điều kiện \(x^2-y^2=4\) thì khá dễ đến việc hyperbolic hóa biến số, qua đó dễ dàng tìm được min của P là \(2\sqrt{5}-6\) . Nhưng sử dụng toán sơ cấp thì đúng là chưa nghĩ ra.

Cách hyperbolic hóa:

\(P=3x^2\left(x^2-4\right)+xy^3+xy\left(y^2+4\right)=3\left(xy\right)^2+xy^3+x^3y=3\left(xy\right)^2+xy\left(x^2+y^2\right)\)

Nếu x;y cùng dấu thì P>0, xét trong trường hợp x;y trái dấu. Không mất tính tổng quát, giả sử \(x>0\) 

Từ giả thiết: \(x^2-y^2=4\Rightarrow\left(\dfrac{x}{2}\right)^2-\left(\dfrac{y}{2}\right)^2=1\) \(\Rightarrow\dfrac{x}{2}\ge1\)

Đặt \(\left\{{}\begin{matrix}\dfrac{x}{2}=cosh\left(u\right)\\\dfrac{y}{2}=sinh\left(u\right)\end{matrix}\right.\)

\(P=3\left(4sinh\left(u\right).cosh\left(u\right)\right)^2+4sinh\left(u\right).cosh\left(u\right)\left[4sinh^2u+4cosh^2u\right]\)

\(=12sinh^2\left(2u\right)+8sinh\left(2u\right).cosh\left(2u\right)\)

\(=6\left[cosh\left(4u\right)-1\right]+4sinh\left(4u\right)\)

\(=6cosh\left(4u\right)+4sinh\left(4u\right)-6\)

\(=2\sqrt{5}\left(\dfrac{3}{\sqrt{5}}cosh\left(4u\right)+\dfrac{2}{\sqrt{5}}sinh\left(4u\right)\right)-6\)

\(=2\sqrt{5}cosh\left(4u+\alpha\right)-6\ge2\sqrt{5}-6\)

(Trong đó  \(\dfrac{3}{\sqrt{5}}=cosh\left(\alpha\right)\) ; \(\dfrac{2}{\sqrt{5}}=sinh\left(\alpha\right)\))

Nhìn điểm rơi \(4u+\alpha=0\) với \(\alpha=arccosh\left(\dfrac{3}{\sqrt{5}}\right)=ln\left(\sqrt{5}\right)\) xuất hiện logarit tự nhiên thì mình không nghĩ bằng 1 pp sơ cấp nào đó có thể giải quyết được bài này.

Bình luận (2)

Các câu hỏi tương tự
MH
Xem chi tiết
PP
Xem chi tiết
NP
Xem chi tiết
TN
Xem chi tiết
PP
Xem chi tiết
VC
Xem chi tiết
PP
Xem chi tiết
TN
Xem chi tiết
MH
Xem chi tiết