Trong không gian Oxyz, cho hai vectơ u → = (3; 4; 0), v → = (2; -1; 2) . Tích vô hướng của hai vectơ u → và v → là:
A. 15
B. 2
C. 3
D. 0
Trong không gian với hệ tọa độ Oxyz, biết u → = 2 ; v → = 1 ; và góc giữa hai vectơ u → và v → bằng 2 π 3 . Tìm k để vectơ p → = k u → + v → vuông góc với vectơ q → = u → - v → .
Cho u → = 1 ; 1 ; 1 v à v → = 0 ; 1 ; m . Để góc giữa hai vectơ u → , v → có số đo bằng 45° thì m bằng
A. ± 3
B. 2 ± 3
C. 1 ± 3
D. 3
Cho u → = 1 ; 1 ; 1 v à v → = 0 ; 1 ; m . Để góc giữa hai vectơ u → , v → có số đo bằng 45° thì m bằng
A. ± 3
B. 2 ± 3
C. 1 ± 3
D. 3
Cho u → = 1 ; 1 ; 1 v à v → = 0 ; 1 ; m . Để góc giữa hai vectơ u → , v → có số đo bằng 45° thì m bằng
A. ± 3
B. 2 ± 3
C. 1 ± 3
D. 3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-2y+z=0 và đường thẳng d : x + 1 1 = y 2 = z - 1 . Gọi ∆ là một đường thẳng chứa trong (P) cắt và vuông góc với d. Vectơ u → = ( a ; 1 ; b ) một vectơ chỉ phương của ∆ . Tính tổng S = a+ b.
A. 1
B. 0
C. 2
D. 4
Cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1), D(-2; 1; -1) Tìm góc giữa hai đường thẳng AB và CD
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : x+y+z-3=0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 . Gọi ∆ là hình chiếu vuông góc của d trên α và u → = ( 1 ; a ; b ) là một vectơ chỉ phương của ∆ với a, b ∈ ℤ . Tính tổng a+b.
A. 0
B. 1
C. -1
D. -2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : x + y + z - 3 = 0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 . Gọi ∆ là hình chiếu vuông góc của d trên α và u → = 1 ; a ; b là một vectơ chỉ phương của ∆ với a , b ∈ ℤ . Tính tổng a+b
A. 0
B. 1
C. - 1
D. - 2
Trong không gian Oxyz, cho hai vectơ u → = (-1; 3; 4), v → = (2; -1; 5). Tích có hướng của hai vectơ u → và v → là:
A. u → , v → = 19 ; 13 ; - 5
B. u → , v → = 19 ; - 13 ; - 5
C. u → , v → = - 19 ; 13 ; - 5
D. u → , v → = 19 ; 13 ; 5