Bài 6: Đối xứng trục

NA

Cho tam giác nhọn ABC. Gọi D là điểm nằm giữa B và C. Vẽ các điểm M và N đối xứng với D lần lượt qua AB và AC.
a) Chứng minh rằng góc MAN luôn có số đo không đổi;
b) Xác định vị trí của D để MN có độ dài ngắn nhất.

NT
25 tháng 8 2021 lúc 21:12

a: Ta có: D đối xứng với M qua AB

nên AB là đường trung trực của MD

Suy ra: AM=AD

Xét ΔAMD có AM=AD

nên ΔAMD cân tại A

mà AB là đường trung trực ứng với cạnh đáy MD

nên AB là tia phân giác của \(\widehat{MAD}\)

Ta có: D và N đối xứng nhau qua AC

nên AC là đường trung trực của ND

Suy ra: AN=AD

Xét ΔAND có AN=AD

nên ΔAND cân tại A

mà AC là đường trung trực ứng với cạnh đáy DN

nên AC là tia phân giác của \(\widehat{DAN}\)

Ta có: \(\widehat{MAN}=\widehat{MAD}+\widehat{NAD}\)

\(=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)\)

\(=2\cdot\widehat{BAC}\)

Bình luận (1)

Các câu hỏi tương tự
AN
Xem chi tiết
NA
Xem chi tiết
HT
Xem chi tiết
NA
Xem chi tiết
SK
Xem chi tiết
DY
Xem chi tiết
TA
Xem chi tiết
DN
Xem chi tiết
TG
Xem chi tiết