Ôn tập: Tam giác đồng dạng

KN

Cho tam giác DEF có DI là phân giác của góc D; I thuộc EF, ED=10 cm , DF=6 cm , FI= 4,8 cm. a) Tính EI b) Qua I kẻ đường thẳng song song với DF cắt DE tại M. Tính ME;MD;IM c) Chứng minh: DE/DF = ME/MD d) Gọi N là trung điểm của DF; DI cắt MN tại K; FM cắt IN tại H.Chứng minh: KH//MI

NT

a: Xét ΔDEF có DI là phân giác

nên \(\dfrac{DE}{DF}=\dfrac{EI}{IF}\)

=>\(\dfrac{EI}{4,8}=\dfrac{10}{6}=\dfrac{5}{3}\)

=>EI=8(cm)

b: Ta có: EI+IF=EF

=>EF=6+8=14(cm)

Xét ΔEDF có MI//DF

nên \(\dfrac{MI}{DF}=\dfrac{EI}{EF}=\dfrac{EM}{ED}\)

=>\(\dfrac{MI}{6}=\dfrac{EM}{10}=\dfrac{6}{14}=\dfrac{3}{7}\)

=>\(MI=\dfrac{18}{7}\left(cm\right);EM=\dfrac{30}{7}\left(cm\right)\)

MD+ME=DE

=>MD+30/7=10

=>MD=40/7(cm)

c: Xét ΔDEF có DI là phân giác

nên \(\dfrac{EI}{IF}=\dfrac{ED}{DF}\left(1\right)\)

Xét ΔEDF có MI//DF

nên \(\dfrac{EI}{IF}=\dfrac{ME}{MD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{ED}{DF}=\dfrac{ME}{MD}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HM
Xem chi tiết
LY
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
LN
Xem chi tiết
LN
Xem chi tiết
KD
Xem chi tiết
LN
Xem chi tiết