Cho hình vuông ABCD nội tiếp đường tròn tâm O, bán kính R và GEF là tam giác đều nội tiếp đường tròn đó, EF là dây song song với AB (h. 119). Cho hình đó quay xung quanh trục GO. Chứng minh rằng:
a) Bình phương thể tích của hình trụ sinh ra bởi hình vuông bằng tích của thể tích hình cầu sinh ra bởi hình tròn và thể tích hình nón do tam giác đều sinh ra.
b) Bình phương diện tích toàn phần của hình trụ bằng tích của diện tích hình cầu và diện tích toàn phần của hình nón.
Một hình nón có bán kính đáy bằng và diện tích xung quanh bằng. Tính thể tích khối nón?
Một hình chữ nhật ABCD có AB > AD, diện tích và chu vi của nó theo thứ tự là 2a2 và 6a. Cho hình vẽ quay xung quanh cạnh AB, ta được một hình trụ.
Tính diện tích xung quanh và thể tích của hình trụ này.
Với một hình nón có bán kính đường tròn đáy là r (cm) và chiều cao 2r (cm) và một hình cầu bán kính r (cm). Hãy tính :
a) Diện tích mặt cầu, biết diện tích toàn phần của hình nón là \(21,06cm^2\)
b) Thể tích hình nón, biết thể tích hình cầu là \(15,8cm^3\)
cho hình vuông ABCD có cạnh AD=3a với a<0, a thuộc R. Tính theo a diện tích xung quanh và thể tích của hình trụ tạo bởi hình vuông ABCD quay quanh đường thẳng MN
Độ dài các cạnh của một tam giác ABC vuông tại A, thỏa mãn các hệ thức sau :
\(BC=AB+2a\)
\(AC=\dfrac{1}{2}\left(BC+AB\right)\)
a là một độ dài cho trước
a) Tính theo a, độ dài các cạnh và chiều cao AH của tam giác
b) Tam giác ABC nội tiếp được trong nửa hình tròn tâm O. Tính diện tích của phần thuộc nửa đường tròn nhưng ở ngoài tam giác ssos
c) Cho tam giác ABC quay một vòng quanh cạnh huyền BC. Tính tỉ số diện tích giữa các phần do các dây cung AB và AC tạo ra
Thể tích của một hình nón thay đổi như thế nào nếu :
a) gấp đôi chiều cao của hình nón
b) gấp đôi bán kính của hình nón
c) gấp đôi cả chiều cao và bán kính đáy của hình nón
Một hình chữ nhật có chiều dài bằng 5cm, chiều rộng bằng 3cm. Quay hình chữ nhật này một vòng quanh chiều dài của nó được một hình trụ. Khi đó diện tích xung quanh bằng:
Cho ba điểm A, O, B thẳng hàng theo thứ tự đó, OA = a; OB = b (a, b cùng đơn vị cm).
Qua A và B vẽ theo thứ tự các tia Ax và By cùng vuông góc với AB và cùng phía với AB. Qua O vẽ hai tia vuông góc với nhau và cắt Ax ở C, By ở D (xem hình 116).
a) Chứng minh AOC và BDO là hai tam giác đồng dạng; từ đó suy ra tích AC.BD không đổi.
b) Tính diện tích hình thang ABDC khi \(\widehat{COA}=60^o.\)
c) Với \(\widehat{COA}=60^o\) cho hình vẽ quay xung quanh AB. Hãy tính tỉ số thể tích với các hình do các tam giác AOC và BOD tạo thành.