Ôn tập chương Hình trụ, Hình nón, Hình cầu

SK

Cho ba điểm A, O, B thẳng hàng theo thứ tự đó, OA = a; OB = b (a, b cùng đơn vị cm).

Qua A và B vẽ theo thứ tự các tia Ax và By cùng vuông góc với AB và cùng phía với AB. Qua O vẽ hai tia vuông góc với nhau và cắt Ax ở C, By ở D (xem hình 116).

a) Chứng minh AOC và BDO là hai tam giác đồng dạng; từ đó suy ra tích AC.BD không đổi.

b) Tính diện tích hình thang ABDC khi \(\widehat{COA}=60^o.\)

c) Với \(\widehat{COA}=60^o\) cho hình vẽ quay xung quanh AB. Hãy tính tỉ số thể tích với các hình do các tam giác AOC và BOD tạo thành.

TB
17 tháng 4 2017 lúc 16:50

Hướng dẫn trả lời:

a) Xét hai tam giác vuông AOC và BDO ta có: ˆA=ˆB=900A^=B^=900

ˆAOC=ˆBDOAOC^=BDO^ (hai góc có cạnh tương ứng vuông góc).

Vậy ∆AOC ~ ∆BDO

⇒ACAO=BOBDhayACa=bBD⇒ACAO=BOBDhayACa=bBD (1)

Vậy AC . BD = a . b = không đổi.

b) Khi thì tam giác AOC trở thành nửa tam giác đều cạnh là OC, chiều cao AC.

⇒OC=2AO=2a⇔AC=OC√32=a√3⇒OC=2AO=2a⇔AC=OC32=a3

Thay AC = a√3 vào (1), ta có:

ACa=bBD=a√3.BD=a.b⇒BD=aba√3=b√33ACa=bBD=a3.BD=a.b⇒BD=aba3=b33

Ta có công thức tính diện tích hình thang ABCD là:

S=AC+BD2.AB=a√3+b√332.(a+b)=√36(3a2+4ab+b2)(cm2)S=AC+BD2.AB=a3+b332.(a+b)=36(3a2+4ab+b2)(cm2)

c) Theo đề bài ta có:

∆AOC tạo nên hình nón có bán kính đáy là AC = a√3 và chiều cao là AO = a.

∆BOD tạo nên hình nón có bán kính đáy là BD=b√33BD=b33 và chiều cao OB = b

Ta có: V1V2=13π.AC2.AO13π.BD2.OB=AC2.AOBD2.OB=(a√3)2.a(b√33)2.b=3a3b33=9a3b3V1V2=13π.AC2.AO13π.BD2.OB=AC2.AOBD2.OB=(a3)2.a(b33)2.b=3a3b33=9a3b3

Vậy V1V2=9a3b3

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
VV
Xem chi tiết
TN
Xem chi tiết
VP
Xem chi tiết
LD
Xem chi tiết
PK
Xem chi tiết
VH
Xem chi tiết