Bài 7: Định lí Pitago

BB
cho tam giác ABCvuông tạiA AB =6cm góc B =60°. tia phân giác của góc C cắt Ab tại D . tính AD và BD
NT
5 tháng 2 2021 lúc 21:04

Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-60^0\)

hay \(\widehat{ACB}=30^0\)

Xét ΔABC vuông tại A có 

\(\widehat{ACB}=30^0\)(cmt)

Cạnh đối diện của \(\widehat{ACB}\) là cạnh AB

Do đó: \(AB=\dfrac{1}{2}\cdot BC\)(Định lí)

\(\Leftrightarrow BC=2\cdot AB=2\cdot6=12\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=12^2-6^2=108\)

\(\Leftrightarrow AC=6\sqrt{3}cm\)

Xét ΔABC có CD là đường phân giác ứng với cạnh AB(gt)

nên \(\dfrac{AD}{AC}=\dfrac{BD}{BC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{AD}{6\sqrt{3}}=\dfrac{BD}{12}\)

mà AD+BD=AB(D nằm giữa A và B)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6\sqrt{3}}=\dfrac{BD}{12}=\dfrac{AD+BD}{6\sqrt{3}+12}=\dfrac{AB}{6\sqrt{3}+12}=\dfrac{6}{6\left(2+\sqrt{3}\right)}=2-\sqrt{3}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{6\sqrt{3}}=2-\sqrt{3}\\\dfrac{BD}{12}=2-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=12\sqrt{3}-18\left(cm\right)\\BD=24-12\sqrt{3}\left(cm\right)\end{matrix}\right.\)

Vậy: \(AD=12\sqrt{3}-18\left(cm\right)\)\(BD=24-12\sqrt{3}\left(cm\right)\)

Bình luận (0)
BL
5 tháng 2 2021 lúc 21:02

???

 

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
DT
Xem chi tiết
LL
Xem chi tiết
LL
Xem chi tiết
LL
Xem chi tiết
CT
Xem chi tiết
TD
Xem chi tiết
VT
Xem chi tiết
BM
Xem chi tiết