Ôn tập chương I : Tứ giác

BA

Cho tam giác ABC vuông tại A.Vẽ trung tuyến AM .Kẻ MI vuống góc AB,MK vuông góc AC.(I thuộc AB,K thuộc AC)

a) chứng minh AIMK là hình chữ nhật 

b)Trên tia MI lấy điểm N sao cho I là trung điểm của MN .Chứng minh tứ giác MNAC là hình bình hành

c)Vẽ AQ vuông góc BC tại Q .Chứng minh tứ giác IQMK là hình thang cân

NT
2 tháng 1 2024 lúc 14:58

a: Xét tứ giác AIMK có

\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)

=>AIMK là hình chữ nhật

b: Xét ΔABC có

M là trung điểm của BC

MI//AC

Do đó: I là trung điểm của AB

Xét ΔBAC có

M,I lần lượt là trung điểm của BC,BA

=>MI là đường trung bình của ΔBAC

=>MI//AC và MI=AC/2

MI//AC

I\(\in\)MN

Do đó: MN//AC

Ta có: \(MI=\dfrac{AC}{2}\)

\(MI=\dfrac{MN}{2}\)

Do đó: MN=AC

Xét tứ giác ACMN có

MN//AC

MN=AC

Do đó: ACMN là hình bình hành

c: Xét ΔBAC có

M là trung điểm của CB

MK//AB

Do đó: K là trung điểm của AC

Xét ΔABC có

I,K lần lượt là trung điểm của AB,AC

=>IK là đường trung bình của ΔABC

=>IK//BC

=>IK//MQ

Ta có: ΔQAC vuông tại Q

mà QK là đường trung tuyến

nên \(QK=\dfrac{AC}{2}\)

mà MI=AC/2

nên QK=MI

Xét tứ giác MQIK có MQ//KI

nên MQIK là hình thang

Hình thang MQIK có MI=QK

nên MQIK là hình thang cân

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NH
Xem chi tiết
AC
Xem chi tiết
NY
Xem chi tiết
TP
Xem chi tiết
NN
Xem chi tiết
AN
Xem chi tiết
YG
Xem chi tiết
PN
Xem chi tiết