Bài 3: Tính chất đường phân giác của tam giác

NN

Cho tam giác ABC vuông tại A(AB<AC), kẻ đường cao AH, trung tuyến AM. Đường thẳng vuông góc với AM tại A cắt đường thằng BC tại D. Chứng minh:

a)AB là tia phần giác của DAH

b)BH.CD=BD.CH

NT
27 tháng 1 2021 lúc 21:02

a) Xét ΔABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về đường trung bình của tam giác)

mà \(BM=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên AM=BM

Xét ΔMBA có MA=MB(cmt)

nên ΔMBA cân tại M(Định nghĩa tam giác cân)

\(\Leftrightarrow\widehat{MAB}=\widehat{MBA}\)(hai góc ở đáy)

\(\Leftrightarrow\widehat{MAB}=\widehat{HBA}\)(1)

Ta có: ΔAHB vuông tại H(AH\(\perp\)BC tại H)

nên \(\widehat{HBA}+\widehat{HAB}=90^0\)(hai góc nhọn phụ nhau)(2)

Ta có: \(\widehat{BAM}+\widehat{BAD}=\widehat{MAD}\)(tia AB nằm giữa hai tia AM,AD)

hay \(\widehat{BAM}+\widehat{BAD}=90^0\)(3)

Từ (1), (2) và (3) suy ra \(\widehat{BAH}=\widehat{BAD}\)

mà tia AB nằm giữa hai tia AH,AD

nên AB là tia phân giác của \(\widehat{DAH}\)(đpcm)

Bình luận (0)

Các câu hỏi tương tự
LG
Xem chi tiết
PA
Xem chi tiết
H24
Xem chi tiết
AA
Xem chi tiết
MN
Xem chi tiết
NN
Xem chi tiết
HC
Xem chi tiết
PH
Xem chi tiết
LG
Xem chi tiết