Cho tam giác ABC vuông tại A đường cao AH kẻ HM vuông góc với AB tại M và HN vuông góc với AC tại N
a, Chứng minh tứ giác amhn là hình chữ nhật
b, lấy điểm K sao cho n là trung điểm của HK Chứng minh tứ giác amnk là hình bình hành
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao AH, gọi M là trung điểm AC.Trên tia đối của tia MH lấy D sao cho MD=MH a) Chứng minh ADHC là hình chữ nhật b) Gọi E là điểm đối xứng C qua H. Chứng minh ADHE là hình bình hành c) Vẽ EK vuông góc AB tại K. Gọi I là trung điểm AK. Chứng minh KE // IH
Cho tam giác ABC vuông tại A đường cao AH kẻ HM vuông góc với AB tại M và HN vuông góc tAC tại N
c, lấy điểm D đối xứng với h điểm H qua điểm M Chứng minh ba điểm D a k thẳng hàng và chứng minh bc² = bc bình phương + ck bình phương+ 2bh x HC
Cho ABC vuông tại A có AH có đường cao. Gọi D là điểm đối xứng của A qua H. Từ D
kẻ đường thẳng song song với AB lần lượt cắt AC và BC tại K và E.
a. Chứng minh tứ giác ABDK là hình thang vuông
b. Chứng minh tứ giác ABDE là hình bình hành
Cho ABC vuông tại A có AH có đường cao. Gọi D là điểm đối xứng của A qua H. Từ D
kẻ đường thẳng song song với AB lần lượt cắt AC và BC tại K và E.
a. Chứng minh tứ giác ABDK là hình thang vuông
b. Chứng minh tứ giác ABDE là hình bình hành
cho tam giác abc nhọn,các đường cao BD,CE cắt nhau tại H.Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhai tại K
a) c/m AH vuông góc BC
b) c/m tứ giác BHCK là hình bình hành
Cho tam giác ABC cân tại A, đường trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng với M qua I a) Biết AB = 8cm. Tính MI b) Chứng minh tứ giác AMCK là hình chữ nhật c) Chứng minh tứ giác ABMK là hình bình hành
Cho hình bình hành ABCD có đường chéo BD tại M , cắt CD tại E . Từ C kẻ đường thẳng vuông góc BD tại N , cắt AB tại F. Chứng minh rằng : a) tam giác AMD = tam giác CNB b) tứ giác AMCN là hình bình hành c) tứ giác AECF là hình bình hành ( CÓ HÌNH VẼ) GIÚP EM VỚI Ạ EM ĐANG CẦN GẤP
Cho tam giác ABC có AB<AC, M là trung điểm BC, N là trung điểm đối xứng của A qua D.
a) Chứng minh rằng tứ giác ABNC là hình bình hành
b) Kẻ AH vuông góc với BC. Gọi E, F lần lượt là trung điểm AB, AC. Chứng minh rằng ME=HF suy ra MHEF là hình thang cân.