Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

H24

Cho tam giác ABC vuông tại A, đường cao AH. E, F lần lượt là hình chiếu của H trên AB, AC. Gọi M là trung điểm BC. Chứng minh \(S_{AEMF}=\dfrac{1}{2}S_{ABC}\)

NT
12 tháng 8 2021 lúc 22:51

Cái bài này thì có lẽ bạn nên chứng minh AM⊥FE là nó ra liền à

Bình luận (0)
NL
12 tháng 8 2021 lúc 23:19

Tứ giác AEHF là hình chữ nhật (3 góc vuông) \(\Rightarrow HE=AF\) và \(AE=HF\)

\(S_{ABC}=S_{ABH}+S_{ACH}=\dfrac{1}{2}HE.AB+\dfrac{1}{2}HF.AC=\dfrac{1}{2}AB.AF+\dfrac{1}{2}AC.AE\)

Gọi K là trung điểm AB \(\Rightarrow MK\) là đường trung bình tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}MK=\dfrac{1}{2}AC\\MK\perp AB\end{matrix}\right.\)

Gọi D là trung điểm AC \(\Rightarrow MD\) là đtb tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}MD=\dfrac{1}{2}AB\\MD\perp AC\end{matrix}\right.\)

\(S_{AEMF}=S_{ABC}-\left(S_{BME}+S_{CMF}\right)=S_{ABC}-\left(\dfrac{1}{2}MK.BE+\dfrac{1}{2}MD.CF\right)\)

\(=S_{ABC}-\dfrac{1}{2}\left(\dfrac{1}{2}AC.\left(AB-AE\right)+\dfrac{1}{2}AB.\left(AC-AF\right)\right)\)

\(=S_{ABC}-\dfrac{1}{2}\left(AB.AC-\left(\dfrac{1}{2}AC.AE+\dfrac{1}{2}AB.AF\right)\right)\)

\(=S_{ABC}-\dfrac{1}{2}\left(2S_{ABC}-S_{ABC}\right)=\dfrac{1}{2}S_{ABC}\) (đpcm)

Bình luận (0)
NL
12 tháng 8 2021 lúc 23:20

undefined

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HT
Xem chi tiết
BN
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
NG
Xem chi tiết
HH
Xem chi tiết
PT
Xem chi tiết
NP
Xem chi tiết