Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

HH

cho tam giác abc vuông tại a đường cao ah gọi e và f lần lượt là hình chiếu của h trên ab và ac biết ab=c , ac=b 

a)  tính hb/hc theo c và b

b)  tính be/cf theo c và b

AT
3 tháng 7 2021 lúc 16:37

a) Ta có: \(\dfrac{HB}{HC}=\dfrac{HB.HC}{HC^2}=\dfrac{HA^2}{HC^2}=\left(\dfrac{HA}{HC}\right)^2\)

Xét \(\Delta AHC\) và \(\Delta BAC:\) Ta có: \(\left\{{}\begin{matrix}\angle AHC=\angle BAC=90\\\angle ACBchung\end{matrix}\right.\)

\(\Rightarrow\Delta AHC\sim\Delta BAC\left(g-g\right)\Rightarrow\dfrac{HA}{HC}=\dfrac{AB}{AC}\)

\(\Rightarrow\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{c^2}{b^2}\)

b) tham khảo ở đây:https://hoc24.vn/cau-hoi/cho-dabc-vuong-tai-a-duong-cao-ah-goi-e-f-lan-luot-la-cac-hinh-chieu-cua-h-tren-ab-va-ac-cmra-aeabaf.1150118751274

Bình luận (0)
LH
3 tháng 7 2021 lúc 16:38

a) Áp dụng hệ thức lượng trong tam giác vuông có:

\(AB^2=BH.BC\)

\(AC^2=CH.CB\)

\(\Rightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}=\dfrac{c^2}{b^2}\)

b) Áp dụng hệ thức lượng trong tam giác vuông có:

\(BH^2=BE.BA\)

\(CH^2=CF.CA\)

\(\Rightarrow\dfrac{BH^2}{CH^2}=\dfrac{BE}{CF}.\dfrac{BA}{CA}\)\(\Leftrightarrow\dfrac{c^4}{b^4}=\dfrac{BE}{CF}.\dfrac{c}{b}\)

\(\Leftrightarrow\dfrac{BE}{CF}=\dfrac{c^3}{b^3}\)

Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
NG
Xem chi tiết
NT
Xem chi tiết
BN
Xem chi tiết
PT
Xem chi tiết
TT
Xem chi tiết
LN
Xem chi tiết
HT
Xem chi tiết
LD
Xem chi tiết