Cho tam giác ABC cân tại A. Phân giác góc C cắt AB tại D. Biết AC = 24cm, BC = 12cm.
a) Tính AD, DB.
b) Đường thẳng vuông góc với CD tại C cắt đường thẳng AB kéo dài tại E. Tìm BE.
Bài 2: Cho tam giác ABC có 3 đường phân giác trong AD, BE, CF cắt nhau tại I. Kẻ đường thẳng qua A song song với BC cắt DF và DE theo thứ tự tại M và N.
a) Chứng minh AM/BD = AC/BC
b) Chứng minh AM = AN
Cho tam giác ABC . Điểm O nằm trong tam giác , AO giao BC tại E ; BO giao AC tại F; CO giao AB tại K. Đường thẳng d qua A và song song với BC cắt các đường BO, CO lần lượt tại M, N . Chứng minh rằng: a) AK/KB= AN/BC
b) BE/AM=EO/OA
c) CF/FA=BC/AM
d) BE/EC=AM/AN
e) AK/KBxBE/ECxCF/FA=1
cho tam giác ABC vuông tại A đường cao AH
a)Chứng minh tam giác ABC đồng dạng cới tam giác HCA. Từ đó suy ra AC.AH=CH.AB
b)Tia phân giác của góc ACB cắt AH tại D. Biết CH=9cm; AC=15cm.
Tính AD;HD
c)Tia Phân giác của góc HAB cắt Bc tại I. Chứng minh ID //AB
Bài 4:Cho tam giác ABC có AB = 6cm, AC = 8cm , BC = 10cm. Lấy điểm D trên AB sao cho AD = 2cm. Qua D vẽ đường thẳng song song với BC cắt AC tại E. 1) Tính AE. 2) Qua E vẽ đường thẳng song song với AB và cắt BC tại F. Tính BF, DE. 3) Tính và so sánh các tỉ số : AD/AB , AE/AC , DE/BC
Bài 27*: Cho tam giác ABC có AD, BE, CF là các đường phân giác. EF kéo dài cắt BC tại I. CMR: AI là đường phân giác ngoài của tam giác ABC.
Cho tam giác ABC vuông tại A, đường cao AH. Lấy điểm D bất kỳ trên cạnh BC, kẻ de vuông góc với AC
a. chứng minh rằng EF= AD
b. gọi o là giao điểm cua EF và AD. chứng minh rằng HO = 1/2 EF
c. tìm vị trí của điểm D trên BC sao cho EF có độ dài nhỏ nhất
Bài 3: Cho tam giác ABC vuông tại A, có AD ⊥ BC tại D. Từ D, kẻ DE ⊥ AB tại E và DF ⊥ AC tại F. Hỏi rằng, khi độ dài các cạnh AB, AC thay đổi thì tổng 1 AE trên AF+ AB trên AC =1 có thay đổi hay không? Vì sao?
Giúp mik với nha Cảm mơn rất rất nhiều:))
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt nhau tại E. BE DE a ) Chứng minh : BA DC b ) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thăng AD , BC tại I , K. Chứng minh : El = EK ; c ) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD ; d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh PT LAD