NA

Cho tam giác ABC vuông tại A có AB < AC, kẻ đường phân giác BD của góc ABC (D thuộc AC). Kẻ DM vuông góc với BC tại M.
a) Chứng minh tam giác DAB = tam giác DMB.
b) Chứng minh BD là đường trung trực của AM.
c) Gọi K là giao điểm của đường thẳng DM và đường thẳng AB, đường thẳng BD cắt KC tại N. Chứng minh BN vuông góc KC và tam giác KDC cân tại D.
d) Gọi E là trung điểm của BC, qua N kẻ đường thảng song song với BC, đường thẳng này cắt AB tại P. CHứng minh ba đường CP, KE, BN đồng quy.

NT
14 tháng 8 2023 lúc 10:09

a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có

BD chung

góc ABD=góc MBD

=>ΔBAD=ΔBMD

b: ΔBAD=ΔBMD

=>BA=BM và DA=DM

=>BD là trung trực của AM

c: Xét ΔDAK vuông tại A và ΔDMC vuông tại M có

DA=DM

góc ADK=góc MDC

=>ΔDAK=ΔDMC

=>DK=DC

=>ΔDKC cân tại D

Xét ΔBKC có

KM,CA là đường cao

KM cắt CA tại D

=>D là trực tâm

=>BD vuông góc CK tại N

 

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
TL
Xem chi tiết
TN
Xem chi tiết
LN
Xem chi tiết
LH
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
HT
Xem chi tiết
TT
Xem chi tiết