PB

Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E a) Chứng minh tam giác ADE cân b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF. c) Chứng minh BD = CE

CT
28 tháng 12 2018 lúc 3:06

Bình luận (0)
NT
21 tháng 12 2022 lúc 14:15

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
HT
Xem chi tiết
DC
Xem chi tiết
DM
Xem chi tiết
LL
Xem chi tiết
LL
Xem chi tiết
HV
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết