Bài 6: Đối xứng trục

NH

Cho tam giác ABC vuông góc tại đỉnh A. Kẻ đường cao AH. Gọi D,E theo thứ tự là các điểm đối xứng của điểm H qua AB,AC. Chứng minh rằng:

1. Điểm A là trung điểm của đoạn DE.

2. DE=2AH

NT
21 tháng 8 2021 lúc 14:15

1: Ta có: D và H đối xứng nhau qua AB

nên AB là đường trung trực của DH

Suy ra: AH=AD

Xét ΔAHD có AH=AD

nên ΔAHD cân tại A

mà AB là đường trung trực ứng với cạnh đáy HD

nên AB là tia phân giác của \(\widehat{HAD}\)

Ta có: H và E đối xứng nhau qua AC

nên AC là đường trung trực của HE

Suy ra: AE=AH

Xét ΔAEH có AE=AH

nên ΔAEH cân tại A

mà AC là đường trung trực ứng với cạnh đáy HE

nên AC là tia phân giác của \(\widehat{EAH}\)

Ta có: \(\widehat{DAE}=\widehat{EAC}+\widehat{HAC}+\widehat{HAB}+\widehat{DAB}\)

\(=2\cdot\left(\widehat{HAC}+\widehat{HAB}\right)\)

\(=2\cdot90^0=180^0\)

Suy ra: D,A,E thẳng hàng

mà AE=AD(=AH)

nên A là trung điểm của DH

2: Ta có: DE=AD+AE

nên DE=AH+AH

hay DE=2AH

Bình luận (0)