H24

Cho tam giác ABC vuông cân tại C, M là điểm bất kì trên cạnh AB (M không trùng với A, B). Vẽ ME vuông góc AC tại E, MF vuông góc với BC tại F. gọi D là trung điểm của AB. CM: ΔDEF vuông cân

NT
30 tháng 10 2023 lúc 0:01

Ta có; ΔABC vuông cân tại C

mà CD là đường trung tuyến

nên CD\(\perp\)AB và CD là phân giác của \(\widehat{ACB}\)

=>\(\widehat{ACD}=\widehat{BCD}=\dfrac{90^0}{2}=45^0\)

Gọi O là giao điểm của CM với FE

Xét tứ giác CEMF có

\(\widehat{CEM}=\widehat{CFM}=\widehat{FCE}=90^0\)

=>CEMF là hình chữ nhật

=>CM cắt EF tại trung điểm của mỗi đường và CM=EF

=>O là trung điểm chung của CM và EF và CM=EF

=>OM=OC=OE=OF
=>O là tâm đường tròn ngoại tiếp tứ giác CFME

\(\widehat{CEM}=\widehat{CFM}=\widehat{CDM}=90^0\)

Do đó: C,E,M,F,D cùng thuộc đường tròn đường kính CM

=>C,E,M,F,D cùng thuộc (O)

=>D thuộc (O)

Xét (O) có

ΔDFE nội tiếp

FE là đường kính

Do đó: ΔDFE vuông tại D

Xét tứ giác FDEC có

\(\widehat{FCE}+\widehat{FDE}=180^0\)

=>FDEC là tứ giác nội tiếp

=>\(\widehat{DFE}=\widehat{DCE}=\widehat{DCA}=45^0\)

Xét ΔDFE vuông tại D có \(\widehat{DFE}=45^0\)

nên ΔDFE vuông cân tại D

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
H24
Xem chi tiết
BN
Xem chi tiết
LM
Xem chi tiết
NQ
Xem chi tiết
DA
Xem chi tiết
NC
Xem chi tiết
NC
Xem chi tiết
L8
Xem chi tiết