KD

cho tam giác ABC tại A , đường cao AH , trung điểm AM(H,M ∈ BC) gọi D,E theo thứ tự là hình chiếu của điểm H trên AD,AC 

a) chứng minh rằng tứ giấcDHE là hình chữ nhật 

b) chứng minh AM vuông góc với DE

c)biết AB= 6cm , AC=8cm . Tính DE

NT
21 tháng 12 2023 lúc 17:33

Sửa đề: D,E lần lượt là hình chiếu của H trên AB,AC

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: Ta có: ADHE là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

mà \(\widehat{AHD}=\widehat{B}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AED}=\widehat{B}\)

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MB=MC

Ta có: MA=MC

=>ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}\)

Ta có: \(\widehat{MAC}+\widehat{AED}\)

\(=\widehat{MCA}+\widehat{B}\)

\(=90^0\)

=>AM\(\perp\)DE

c: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>\(AH=\dfrac{48}{10}=4,8\left(cm\right)\)

Ta có: ADHE là hình chữ nhật

=>DE=AH

mà AH=4,8cm

nên DE=4,8cm

Bình luận (0)

Các câu hỏi tương tự
VC
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
TX
Xem chi tiết
NM
Xem chi tiết
NP
Xem chi tiết
HA
Xem chi tiết