BB

Cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm. Đường trung tuyến AM. Gọi D là điểm đối xứng với A qua M.

a) Chứng minh tứ giác ABCD là hình chữ nhật. Tính AD.

b) Kẻ đường cao AH. Gọi K là hình chiếu của D trên BC. Chứng minh AK // DH.

c) Dựng E đối xứng với A qua BC. Chứng minh BCDE là hình thang cân.

NT
9 tháng 12 2023 lúc 9:54

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Hình bình hành ABDC có \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

=>AD=BC

mà BC=10cm

nên AD=10cm

b: Xét ΔMHA vuông tại H và ΔMKD vuông tại K có

MA=MD

\(\widehat{HMA}=\widehat{KMD}\)(hai góc đối đỉnh)

Do đó: ΔMHA=ΔMKD

=>MH=MK

=>M là trung điểm của HK

Xét tứ giác AHDK có

M là trung điểm chung của AD và HK

=>AHDK là hình bình hành

=>AK//DH

c: E đối xứng A qua BC

=>BC là đường trung trực của AE

=>BC\(\perp\)AE tại trung điểm của AE(1)

Ta có: BC\(\perp\)AE

BC\(\perp\)AH

AE,AH có điểm chung là A

Do đó: E,A,H thẳng hàng(2)

Từ (1) và (2) suy ra H là trung điểm của AE

Xét ΔADE có

H,M lần lượt là trung điểm của AE,AD

=>HM là đường trung bình của ΔADE

=>HM//DE

mà \(H\in BC;M\in\)BC

nên DE//BC

Xét ΔCAE có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAE cân tại C

=>CA=CE

mà CA=BD(ABDC là hình chữ nhật)

nên CE=BD

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

Hình thang BEDC có BD=CE

nên BEDC là hình thang cân

Bình luận (0)

Các câu hỏi tương tự
VD
Xem chi tiết
H24
Xem chi tiết
BT
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
PN
Xem chi tiết
PN
Xem chi tiết
PN
Xem chi tiết