Có \(NC=2NA\Rightarrow\overrightarrow{NA}=\frac{1}{3}\overrightarrow{CA}\)
Có \(\overrightarrow{KD}=\overrightarrow{KM}+\overrightarrow{MB}+\overrightarrow{BD}\)
\(=\frac{1}{2}\overrightarrow{NM}+\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC}\)
\(=\frac{1}{2}\left(\overrightarrow{NA}+\overrightarrow{AM}\right)+\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BA}+\frac{1}{2}\overrightarrow{AC}\)
\(=\frac{1}{2}\left(\frac{1}{3}\overrightarrow{CA}+\frac{1}{2}\overrightarrow{AB}\right)+\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BA}+\frac{1}{2}\overrightarrow{AC}\)
\(=\frac{1}{3}\overrightarrow{AC}+\frac{1}{4}\overrightarrow{AB}\)
Đúng 0
Bình luận (0)