Bài 4:Cho tam giác ABC có AB = 6cm, AC = 8cm , BC = 10cm. Lấy điểm D trên AB sao cho AD = 2cm. Qua D vẽ đường thẳng song song với BC cắt AC tại E. 1) Tính AE. 2) Qua E vẽ đường thẳng song song với AB và cắt BC tại F. Tính BF, DE. 3) Tính và so sánh các tỉ số : AD/AB , AE/AC , DE/BC
Bài 12: Cho ∆ABC, kẻ đường thẳng song song với BC cắt AB tại D và cất AC tại E. Qua C kẻ tia Cx song song với AB cắt DE ở G. Gọi H là điểm của AC và BG.
a) Chứng minh DA.EG=DB.DE.
b) Chứng minh HC²=HE.HA.
Cho tam giác abc điểm I nằm trong tam giác. Các đoạn IA, IB, IC cắt BC,CÁ,AB lần lượt tại M,N,P. Qua A vẽ đường thẳng song song với BC cắt BN tại E và CD tại F. Chứng minh rằng \(\dfrac{NA}{NC}+\dfrac{PA}{PB}=\dfrac{IA}{IM}\)
cho tam ABC lấy điểm D trên cạnh AB.Qua B kẻ đường thẳng song song với bc cắt AC tại E. a, Biết AD=3cm AB=5cm BC=10cm.Tính de b, Qua C kẻ đường thẳng song song với AB cắt tia DE tại G. CM: DA.EG=DB.DE
cho điểm E thuộc cạnh AC của tam giác ABC. QUA B kẻ 1 đường thẳng I. Đường thẳng qua E và song song với BC cắt I tại N. Đường thẳng qua E và song song với AB cắt I tại M. Chứng minh AN//CM
Qua một điểm O tùy ý ở trong tam giác ABC kẻ đường thẳng song song với AB, cắt AC và BC tại D và E , đường thẳng song song với AC cắt AB và BC tại F và K , đường thẳng song song với BC cắt AB và AC tại M và N . CM:
AF: AB + BE: BC+CN:CA= 1
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt nhau tại E. BE DE a ) Chứng minh : BA DC b ) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thăng AD , BC tại I , K. Chứng minh : El = EK ; c ) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD ; d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh PT LAD
Cho tam giác ABC, AD là đường trung tuyến. Gọi M là điểm tùy ý thuộc khoảng BD. Lấy E thuộc AB và F thuộc AC sao cho ME//AC; MF//AB . Gọi H là giao điểm MF và AD. Đường thẳng qua B song song với EH cắt MF tại K. Đường thẳng AK cắt BC tại I. Tính tỉ số IB/ID