Bài 1: Định lý Talet trong tam giác

LA

Cho tam giác ABC, đường thẳng song song với BC cắt cạnh AB, AC lần lượt tại D, E. Vẽ đường thẳng a qua A và song song với BC. Đường thẳng a cắt đường thẳng BE và CD lần lượt tại G và K

CM: A là trung điểm của của KL

VT
11 tháng 1 2020 lúc 10:38

Sửa lại là CM: A là trung điểm của KG nhé.

+ Xét \(\Delta ABC\) có:

\(DE\) // \(BC\left(gt\right)\)

=> \(\frac{AD}{DB}=\frac{AE}{EC}\) (định lí Ta - lét) (1).

+ Xét \(\Delta DBC\) có:

\(AK\) // \(BC\left(gt\right)\)

=> \(\frac{AK}{BC}=\frac{AD}{DB}\) (định lí Ta - lét) (2).

+ Xét \(\Delta BEC\) có:

\(AG\) // \(BC\left(gt\right)\)

=> \(\frac{AG}{BC}=\frac{AE}{EC}\) (định lí Ta - lét) (3).

Từ (1), (2) và (3) \(\Rightarrow\frac{AK}{BC}=\frac{AG}{BC}.\)

=> \(AK=AG.\)

=> A là trung điểm của \(KG\left(đpcm\right).\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HH
Xem chi tiết
AP
Xem chi tiết
AN
Xem chi tiết
MM
Xem chi tiết
DD
Xem chi tiết
NT
Xem chi tiết
TM
Xem chi tiết
HM
Xem chi tiết
TN
Xem chi tiết