Bài 7: Định lí Pitago

NT

cho tam giác ABC có góc A bằng 90 độ, trên cạnh BC lấy điểm D sao cho BD=DA , từ D kẻ Dk vuông góc với AC ( K thuộc AC ) từ A kẻ AH vuông góc với BC ( H thuộc BC ).a, Chứng minh góc HAD= góc KADb, cho AK = √7 cmHD = 3 cmTính AD

NT
29 tháng 1 2021 lúc 23:16

a) Ta có: ΔADH vuông tại H(AH\(\perp\)HD tại H)

nên \(\widehat{DAH}+\widehat{ADH}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{DAH}+\widehat{BDA}=90^0\)(1)

Ta có: \(\widehat{CAD}+\widehat{BAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)

nên \(\widehat{KAD}+\widehat{BAD}=90^0\)(2)

Xét ΔBAD có BA=BD(gt)

nên ΔBAD cân tại B(Định nghĩa tam giác cân)

Ta có: ΔBAD cân tại B(cmt)

nên \(\widehat{BAD}=\widehat{BDA}\)(hai góc ở đáy)(3)

Từ (1), (2) và (3) suy ra \(\widehat{KAD}=\widehat{HAD}\)(đpcm)

b) 

Xét ΔKAD vuông tại K và ΔHAD vuông tại H có 

AD chung

\(\widehat{KAD}=\widehat{HAD}\)(cmt)

Do đó: ΔKAD=ΔHAD(cạnh huyền-góc nhọn)

⇒AK=AH(hai cạnh tương ứng)

mà \(AK=\sqrt{7}cm\)

nên \(AH=\sqrt{7}cm\)

Áp dụng định lí Pytago vào ΔAHD vuông tại H, ta được:

\(AD^2=AH^2+HD^2\)

\(\Leftrightarrow AD^2=\left(\sqrt{7}\right)^2+3^2=16\)

hay AD=4(cm)

Vậy: AD=4cm

Bình luận (0)

Các câu hỏi tương tự
CT
Xem chi tiết
PT
Xem chi tiết
DA
Xem chi tiết
VH
Xem chi tiết
NX
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
B7
Xem chi tiết