Luyện tập về ba trường hợp bằng nhau của tam giác

NH

cho tam giác ABC có góc a bằng 90 độ. gọi M là trung điểm của AC. trên tia đối của tia MB lấy điểm D sao cho MB = MD.

a, chứng minh rằng tam giác ABM bằng tam giác CDM.

b, chứng minh DC vuông góc với AC, từ đó chứng minh AB song song với CD

 c, lấy K là trung điểm của BC .trên tia AK lấy điểm E sao cho K là trung điểm của AE. chứng minh rằng C là trung điểm của DE.

NT
3 tháng 12 2023 lúc 8:43

a: Xét ΔABM và ΔCDM có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔABM=ΔCDM

b: ΔABM=ΔCDM

=>\(\widehat{MAB}=\widehat{MCD}=90^0\)

=>DC\(\perp\)AC

mà AC\(\perp\)AB

nên AB//DC

c: ΔMAB=ΔMCD

=>AB=CD

Xét ΔKAB và ΔKEC có

KA=KE

\(\widehat{AKB}=\widehat{EKC}\)

KB=KC

Do đó: ΔKAB=ΔKEC

=>AB=EC 

ΔKAB=ΔKEC

=>\(\widehat{KAB}=\widehat{KEC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//EC

AB//EC

AB//CD

CD,EC có điểm chung là C

Do đó: E,C,D thẳng hàng

AB=EC

AB=CD

Do đó: EC=CD

Ta có: E,C,D thẳng hàng

EC=CD

Do đó: C là trung điểm của ED

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
TN
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
AM
Xem chi tiết
LN
Xem chi tiết
NV
Xem chi tiết
VC
Xem chi tiết
7K
Xem chi tiết