Luyện tập về ba trường hợp bằng nhau của tam giác

7K

Cho tam giác ABC có : AB=AC, M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho AM=MD a/ Chứng minh ABM=DCM b/ Chứng minh AB // DC c/ Chứng minh AM vuông góc với BC d/ Tìm điều kiện của tam giác ABC để ADC =30°. Chứng minh AD = BH e/ Trên tia đối của tia AC lấy H sao cho AC=AH.Chứng minh AD=BM f/ Chứng minh tam giác HBC vuông (Chỉ cần làm câu e và f )

MN
1 tháng 2 2022 lúc 16:35
 

Tham Khảo :

Bạn tự vẽ hình nha

a) Xét t/g ABM và t/g DCM có:

BM = CM (gt)

AMB = DMC ( đối đỉnh)

MA = MD (gt)

Do đó, t/g ABM = t/g DCM (c.g.c) (đpcm)

b) t/g ABM = t/g DCM (câu a)

=> ABM = DCM (2 góc tương ứng)

Mà ABM và DCM là 2 góc ở vj trí so le trong nên AB // DC (đpcm)

c) t/g AMC = t/g AMB (c.c.c)

=> AMC = AMB (2 góc tương ứng)

Mà AMC + AMB = 180o ( kề bù)

=> AMC = AMB = 90o

=> AM _|_ BC (đpcm)

d) AB // CD => BAD = ADC = 30o (so le trong)

Mà BAD = CAD do t/g AMB = t/g AMC (câu c)

=> BAD + CAD = 2.BAD = 2.30o = 60o

T/g ABC cân tại A, có BAC = 60o

=> t/g BAC đều

Bình luận (0)

Các câu hỏi tương tự
VN
Xem chi tiết
VC
Xem chi tiết
LT
Xem chi tiết
TN
Xem chi tiết
CP
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
MN
Xem chi tiết
AM
Xem chi tiết