Bài 9: Hình chữ nhật

XM

Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia By song song với AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường MP cắt AC tại Q và BQ cắt AI tại H.

a) Tứ giác AMBQ là hình gì?

b) Chứng minh rằng CH AB ⊥ .

c) Chứng minh tam giác PIQ cân.

NT
14 tháng 8 2021 lúc 21:02

a: Xét ΔPMB và ΔPQA có

\(\widehat{PBM}=\widehat{PAQ}\)

PB=PA

\(\widehat{MPB}=\widehat{QPA}\)

Do đó: ΔPMB=ΔPQA

Suy ra: MB=AQ

Xét tứ giác AMBQ có 

MB//AQ

MB=AQ

Do đó: AMBQ là hình bình hành

mà \(\widehat{MAQ}=90^0\)

nên AMBQ là hình chữ nhật

Bình luận (0)
NT
26 tháng 11 2021 lúc 11:26

Câu a có r mk ko ghi lại nx nhe

b) Ta có AQBM là HCN (CMa)

=> ^AQB=90hay BQ ⊥ AC  

=> BQ là đường cao của ΔABC

Mà H là giao điểm của 2 đường cao AI và BQ của ΔABC (gt)

=> H là trực tâm của ΔABC

=> CH cũng là đường cao của ΔABC (H là trực tâm; H ∈ CH)

=> CH ⊥ AB (đpcm)

Bình luận (0)

Các câu hỏi tương tự
BD
Xem chi tiết
VP
Xem chi tiết
LC
Xem chi tiết
VL
Xem chi tiết
PN
Xem chi tiết
PA
Xem chi tiết
HM
Xem chi tiết
PH
Xem chi tiết
QS
Xem chi tiết