Bài 5. ÔN TẬP CUỐI NĂM

TH

Cho tam giác ABC có AB:5x+y-5=0,AC:7x-y-19=0

B(1;0),C(3;2)

a) Viết pt cạnh BC ,đường cao BH, tiếp tuyến CC'

b)Viết pt đtròn (C) tâm A đi qua C

c) Viết pt đt ròn (C) đường kính BC

d) Viết pt đtròn (C) ngoại tiếp tam giác ABC

CẦN GẤP LẮM Ạ !!!! Help em vs .Cảm ơn ạ!

NL
18 tháng 6 2020 lúc 23:50

\(\overrightarrow{BC}=\left(2;2\right)=2\left(1;1\right)\)

\(\Rightarrow\) đường thẳng BC nhận \(\left(1;-1\right)\) là 1 vtpt

Phương trình BC: \(1\left(x-1\right)-1\left(y-0\right)=0\Leftrightarrow x-y-1=0\)

BH vuông góc AC nên nhận \(\left(1;7\right)\) là 1 vtpt

Pt BH qua B: \(1\left(x-1\right)+7\left(y-0\right)=0\Leftrightarrow x+7y-1=0\)

Chắc bạn ghi sai đề, làm gì có tiếp tuyến CC'?

b/ A là giao điểm AB và AC nên tọa độ thỏa: \(\left\{{}\begin{matrix}5x+y-5=0\\7x-y-19=0\end{matrix}\right.\) \(\Rightarrow A\left(2;-5\right)\)

\(\Rightarrow\overrightarrow{AC}=\left(1;7\right)\Rightarrow R=AC=\sqrt{1^2+7^2}=\sqrt{50}\)

Pt đường tròn: \(\left(x-2\right)^2+\left(y+5\right)^2=50\)

c/ \(\overrightarrow{BC}=\left(2;2\right)\Rightarrow BC=\sqrt{2^2+2^2}=2\sqrt{2}\)

Gọi M là trung điểm BC \(\Rightarrow M\left(2;1\right)\) \(\Rightarrow\) M là tâm đường tròn

\(R=BM=\frac{BC}{2}=\sqrt{2}\)

Phương trình: \(\left(x-2\right)^2+\left(y-1\right)^2=2\)

d/ Trung trực d của BC qua M và vuông góc BC có pt:

\(1\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow x+y-3=0\)

Gọi N là trung điểm AC \(\Rightarrow N\left(\frac{5}{2};-\frac{3}{2}\right)\)

Trung trực d' của AC qua N và vuông góc AC có pt:

\(1\left(x-\frac{5}{2}\right)+7\left(y+\frac{3}{2}\right)=0\Leftrightarrow x+7y+8=0\)

Gọi I là tâm đường tròn ngoại tiếp tam giác => I là giao của d và d'

Tọa độ I thỏa mãn: \(\left\{{}\begin{matrix}x+y-3=0\\x+7y+8=0\end{matrix}\right.\) \(\Rightarrow I\left(\frac{29}{6};-\frac{11}{6}\right)\)

\(\Rightarrow\overrightarrow{IB}=\left(-\frac{23}{6};\frac{11}{6}\right)\Rightarrow R=IB=\frac{5\sqrt{26}}{6}\)

Pt: \(\left(x-\frac{29}{6}\right)^2+\left(y+\frac{11}{6}\right)^2=\frac{325}{18}\)

Bạn kiểm tra lại tính toán

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết
LT
Xem chi tiết
NN
Xem chi tiết
LT
Xem chi tiết
DN
Xem chi tiết