Bài 8: Các trường hợp bằng nhau của tam giác vuông

LH

Cho tam giác ABC có AB bằng AC,trên cạnh AB lấy điểm M,trên cạnh AC lấy điểm N sao cho AM bằng AN.Gọi H là trung điểm của BC.

a/ Chứng minh:Góc ABH bằng góc ACH

b/ Gọi E là giao điểm của AH và NM.Cứng minh:Tam giác AME bằng Tam giác ANE

c/ Chứng minh:MN song song BC

NT
9 tháng 12 2021 lúc 21:38

a: Xét ΔABH và ΔACH có 

AB=AC

AH chung

BH=CH

Do đó: ΔABH=ΔACH

Suy ra: \(\widehat{ABH}=\widehat{ACH}\)

Bình luận (0)
TB
9 tháng 12 2021 lúc 21:39

a) Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

Suy ra: ˆABC=ˆACB(hai góc ở đáy)

hay ˆABH=ˆACH

b) Xét ΔABH và ΔACH có 

AB=AC(ΔABC cân tại A)

AH chung

BH=CH(H là trung điểm của BC)

Do đó: ΔABH=ΔACH(c-c-c)

Suy ra: ˆBAH=ˆCAH(hai góc tương ứng)

hay ˆMAE=ˆNAE

Xét ΔAME và ΔANE có 

AM=AN(gt)

ˆMAE=ˆNAE(cmt)

AE chung

Do đó: ΔAME=ΔANE(c-g-c)

c) Ta có: ΔAME=ΔANE(cmt)

nên ˆAEM=ˆAEN(hai góc tương ứng)

mà ˆAEM+ˆAEN=1800(hai góc so le trong)

nên ˆAHB=ˆAHC=18002=900

Suy ra: AH⊥BC tại H(2)

Từ (1) và (2) suy ra MN//BC(Đpcm)

Bình luận (0)
NH
9 tháng 12 2021 lúc 21:45

a) Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

Suy ra: ˆABC=ˆACB(hai góc ở đáy)

hay ˆABH=ˆACH

b) Xét ΔABH và ΔACH có 

AB=AC(ΔABC cân tại A)

AH chung

BH=CH(H là trung điểm của BC)

Do đó: ΔABH=ΔACH(c-c-c)

Suy ra: ˆBAH=ˆCAH(hai góc tương ứng)

hay ˆMAE=ˆNAE

Xét ΔAME và ΔANE có 

AM=AN(gt)

ˆMAE=ˆNAE(cmt)

AE chung

Do đó: ΔAME=ΔANE(c-g-c)

c) Ta có: ΔAME=ΔANE(cmt)

nên ˆAEM=ˆAEN(hai góc tương ứng)

mà ˆAEM+ˆAEN=1800(hai góc so le trong)

nên ˆAHB=ˆAHC=18002=900

Suy ra: AH⊥BC tại H(2)

Từ (1) và (2) suy ra MN//BC(Đpcm)

Bình luận (0)

Các câu hỏi tương tự
ML
Xem chi tiết
QQ
Xem chi tiết
NK
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết
HM
Xem chi tiết
QD
Xem chi tiết
KT
Xem chi tiết
NA
Xem chi tiết