Luyện tập về ba trường hợp bằng nhau của tam giác

CY
Cho tam giác ABC cân tại A. Trên tia đối BC và CB lấy theo thứ tự hải điểm Q,R sao cho BQ=CT a,chứng minh AQ=AR b,Gọi H là trung điểm của BC
TM
18 tháng 2 2021 lúc 20:48

a) Vì △ABC cân tại A ⇒ AB = AC ( tính chất t/g cân )⇒ABCˆ=ACBˆ(tính chất t/g cân)⇒ABC^=ACB^(tính chất t/g cân)Có : QBAˆ+ABCˆ=180o(kề bù)QBA^+ABC^=180o(kề bù)⇒QBAˆ=180o−ABCˆ⇒QBA^=180o−ABC^Có: ACBˆ+ACRˆ=180o(kề bù)ACB^+ACR^=180o(kề bù)⇒ACRˆ=180o−ACBˆ⇒ACR^=180o−ACB^Mà ABCˆ=ACBˆ(cmt)ABC^=ACB^(cmt)⇒ABQˆ=ACRˆ⇒ABQ^=ACR^Xét △ABQ và △ACR có:AB = AC ( cmt )ABQˆ=ACRˆABQ^=ACR^ ( cmt )BQ = CR ( gt )⇒ △ABQ = △ACR ( c.g.c )⇒ AQ = AR ( tương ứng )

Bình luận (1)
NT
18 tháng 2 2021 lúc 21:06

Sửa đề: BQ=CR

a) Ta có: \(\widehat{ABQ}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACR}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABQ}=\widehat{ACR}\)

Xét ΔABQ và ΔACR có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABQ}=\widehat{ACR}\)(cmt)

BQ=CR(gt)

Do đó: ΔABQ=ΔACR(c-g-c)

Suy ra: AQ=AR(hai cạnh tương ứng)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
TQ
Xem chi tiết
NN
Xem chi tiết
LT
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết