Bài 6: Tam giác cân

KD

cho tam giác ABC cân tại A , có AH là đường cao.                                             a) CMR : AH là tia phân giác cua góc BAC .                                                       b) Gọi E là trung điểm của AC , F là trung điểm của AB , CMR : BE=CF.           c) CMR: EF // BC .

NT
5 tháng 1 2021 lúc 21:14

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

\(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

mà tia AH nằm giữa hai tia AB,AC

nên AH là tia phân giác của \(\widehat{BAC}\)(đpcm)

b) Ta có: \(AF=BF=\dfrac{AB}{2}\)(F là trung điểm của AB)

\(AE=CE=\dfrac{AC}{2}\)(E là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên BF=CE=AF=AE

Xét ΔBFC và ΔCEB có 

BF=CE(cmt)

\(\widehat{FBC}=\widehat{ECB}\)(hai góc ở đáy của ΔABC cân tại A)

BC chung

Do đó: ΔBFC=ΔCEB(c-g-c)

⇒CF=BE(hai cạnh tương ứng)

c) Xét ΔAFE có AF=AE(cmt)

nên ΔAFE cân tại A(Định nghĩa tam giác cân)

\(\widehat{AFE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAFE cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AFE}=\widehat{ABC}\)

mà \(\widehat{AFE}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên FE//BC(Dấu hiệu nhận biết hai đường thẳng song song)

Bình luận (0)
TV
5 tháng 1 2021 lúc 21:15

undefined

Bình luận (0)