Bài 8: Các trường hợp bằng nhau của tam giác vuông

ND

cho tam giác ABC cân tại A , B=30 độ kẻ AH vuông góc với BC ( H thuộc BC )       a tính số đo góc A      b chứng minh góc BAH = góc CAH      c cho AH = 3cm , HC = 4cm tính độ dài AC    d kẻ HE vuông góc với AB , HF vuông goc với AC ( E thuộc AB , F thuộc AC ) . Chứng minh HE = HF

NH
24 tháng 3 2021 lúc 21:14

a. Ta có : \(\widehat{B}\)=30 MÀ ΔABC CÂN TẠI A

\(\widehat{C}\)=30

MÀ \(\widehat{A}+\widehat{B}+\widehat{C}\)=180

\(\widehat{A}\) + 30+30=180

\(\widehat{A}\)=180-30-30

\(\widehat{A}\)=120

xÉT ΔAHB vuông tại H, ΔAHC vuông tại H

CÓ : AB = AC (TAM GIÁC ABC CÂN TẠI A)

\(\widehat{B}=\widehat{C}\)(TAM GIÁC ABC CÂN TẠI A)

⇒ΔAHB = ΔAHC (C.HUYỀN-G.NHỌN)

\(\widehat{BAH}=\widehat{CAH}\)

C.TRONG TAM GIÁC AHC VUÔNG TẠI H 

\(AC^2=HC^2+AH^2\)

\(AC^2\)=\(4^2\)+\(3^2\)

\(AC^2\)=16+9 

AC=\(\sqrt{25}\)=5CM

D.XÉT ΔAHE VUÔNG TẠI E, ΔAHF VUÔNG TẠI F 

CÓ: AH : CẠNH HUYỀN CHUNG

\(\widehat{BAH}=\widehat{CAH}\) (ΔAHB = ΔAHC)

⇒ΔAHE=ΔAHF( C.HUYỀN-G.NHỌN)

⇒HE=HF (2 CẠNH TƯƠNG ỨNG)

Bình luận (0)
NT
24 tháng 3 2021 lúc 20:58

b) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
DD
Xem chi tiết
VD
Xem chi tiết
Xem chi tiết
ND
Xem chi tiết
PL
Xem chi tiết
KT
Xem chi tiết
QD
Xem chi tiết
QD
Xem chi tiết