Ôn tập Tam giác

PT

Cho tam giác ABC cân tại A

AD ⊥BC, DE⊥AB,DF⊥AC

a,chứng minh △DEF cân

b,c/m △BDE=△CDF

c,từ B kẻ đường thẳng // với AD cắt AC tại M sao cho ∠ABC =30⁰.C/m △ABM đều

d, nếu cho ∠C =45⁰, AD= 3cm .tính AC

GIÚP MÌNH VỚI MAI MÌNH PHẢI NỘP RỒI

VT
16 tháng 2 2020 lúc 18:05

a) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)

=> \(\left\{{}\begin{matrix}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{matrix}\right.\) (tính chất tam giác cân).

Xét 2 \(\Delta\) vuông \(ABD\)\(ACD\) có:

\(\widehat{ADB}=\widehat{ADC}=90^0\left(gt\right)\)

\(AB=AC\left(cmt\right)\)

Cạnh AD chung

=> \(\Delta ABD=\Delta ACD\) (cạnh huyền - cạnh góc vuông).

=> \(\widehat{BAD}=\widehat{CAD}\) (2 góc tương ứng).

Hay \(\widehat{EAD}=\widehat{FAD}.\)

Xét 2 \(\Delta\) vuông \(AED\)\(AFD\) có:

\(\widehat{AED}=\widehat{AFD}=90^0\left(gt\right)\)

Cạnh AD chung

\(\widehat{EAD}=\widehat{FAD}\left(cmt\right)\)

=> \(\Delta AED=\Delta AFD\) (cạnh huyền - góc nhọn).

=> \(ED=FD\) (2 cạnh tương ứng).

=> \(\Delta DEF\) cân tại \(D.\)

b) Theo câu a) ta có \(\Delta ABD=\Delta ACD.\)

=> \(BD=CD\) (2 cạnh tương ứng).

Xét 2 \(\Delta\) vuông \(BDE\)\(CDF\) có:

\(\widehat{BED}=\widehat{CFD}=90^0\left(gt\right)\)

\(BD=CD\left(cmt\right)\)

\(DE=DF\left(cmt\right)\)

=> \(\Delta BDE=\Delta CDF\) (cạnh huyền - cạnh góc vuông).

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
PA
Xem chi tiết
VC
Xem chi tiết
MY
Xem chi tiết
MY
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
TD
Xem chi tiết
LL
Xem chi tiết