Ôn tập chương I : Tứ giác

H24

Cho tam giác ABC các đường trung tuyến BD và CE cắt nhau ở G. Gọi H là đường trung điểm của GB, K là trung điểm của GC.

a. Chứng minh: Tứ giác DEHK là hình bình hành.

b. Nếu tam giác ABC cân tại A. Chứng minh: BD=CE và DEHK là hình chữ nhật.

NM
12 tháng 12 2021 lúc 16:55

\(a,\) Vì E,D là trung điểm AB,AC nên ED là đường trung bình tam giác ABC

Do đó \(ED//BC;ED=\dfrac{1}{2}BC(1)\)

Vì H,K là trung điểm GB,GC nên HK là đường trung bình tam giác BGC

Do đó \(HK//BC;HK=\dfrac{1}{2}BC(2)\)

Từ \((1)(2)\Rightarrow HK//ED;HK=ED\)

Vậy DEHK là hình bình hành

\(b,\Delta ABC\) cân tại A nên \(AB=AC\Rightarrow \dfrac{1}{2}AB=\dfrac{1}{2}AC\)

\(\Rightarrow AE=EB=AD=DC\)

Ta có \(AB=AC;AE=AD;\widehat{BAC}\) chung

\(\Rightarrow \Delta ADB=\Delta AEC(c.g.c)\\ \Rightarrow BD=EC\)

Lại có G là trọng tâm tam giác ABC nên \(CK=KG=GE=\dfrac{1}{3}CE\)

\(BH=HG=GD=\dfrac{1}{3}BD\)

Do đó \(KG+GE=HG+GD(\dfrac{2}{3}BD=\dfrac{2}{3}CE)\)

\(\Rightarrow EK=HD\)

Vậy DEHK là hình chữ nhật

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
LS
Xem chi tiết
PM
Xem chi tiết
VA
Xem chi tiết
HH
Xem chi tiết
TP
Xem chi tiết
TT
Xem chi tiết
LT
Xem chi tiết
HN
Xem chi tiết