Bài 2: Cộng, trừ số hữu tỉ

LH

Cho \(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)

\(P=\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)

Giá trị biểu thức \(\left(S-P\right)^{2013}\)

NH
31 tháng 8 2017 lúc 21:28

Ta có :

\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+..........+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)

\(=\left(1+\dfrac{1}{3}+..........+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+......+\dfrac{1}{2012}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+......+\dfrac{1}{2012}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+......+\dfrac{1}{1006}\right)\)

\(=\dfrac{1}{1007}+\dfrac{1}{1008}+..........+\dfrac{1}{2013}\)

\(\Leftrightarrow S-P=\left(\dfrac{1}{1007}+\dfrac{1}{1008}+....+\dfrac{1}{2013}\right)-\left(\dfrac{1}{1007}+\dfrac{1}{1008}+....+\dfrac{1}{2013}\right)\)

\(\Leftrightarrow S-P=0\)

\(\Leftrightarrow\left(S-P\right)^{2013}=0^{2013}=0\)

Bình luận (0)
NV
3 tháng 9 2017 lúc 20:33

\(1+\dfrac{1}{2}+...+\dfrac{1}{2012}+\dfrac{1}{2013}-2\times\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2010}+\dfrac{1}{2012}\right)\)

\(\Rightarrow1+\dfrac{1}{2}+...+\dfrac{1}{2012}+\dfrac{1}{2013}-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1005}+\dfrac{1}{1006}\right)\)

\(\Rightarrow\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)

\(\Rightarrow S=P\Rightarrow S-P=0\Rightarrow\left(S-P\right)^{2013}=1\)

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
SK
Xem chi tiết
PN
Xem chi tiết
HT
Xem chi tiết
NL
Xem chi tiết
DH
Xem chi tiết
VA
Xem chi tiết
NL
Xem chi tiết
HT
Xem chi tiết