Ôn tập cuối năm môn Đại số

H24

Cho pt \(x^4+4x^3+4\left(1-m\right)x^2-8mx+3m+1=0\). Tìm m để phương trình có nghiệm.

NL
23 tháng 2 2021 lúc 23:38

\(x^4+4x^3+4x^2-4mx^2-8mx+3m+1=0\)

\(\Leftrightarrow\left(x^2+2x\right)^2-4m\left(x^2+2x\right)+3m+1=0\)

Đặt \(x^2+2x=t\ge-1\)

\(\Rightarrow f\left(t\right)=t^2-4m.t+3m+1=0\) (1)

\(\Delta'=4m^2-3m-1\ge0\Rightarrow\)\(\left[{}\begin{matrix}m\ge1\\m\le-\dfrac{1}{4}\end{matrix}\right.\)

Khi đó (1) có 2 nghiệm thỏa mãn \(t_1\le t_2< -1\) khi

 \(\left\{{}\begin{matrix}f\left(-1\right)>0\\\dfrac{t_1+t_2}{2}< -1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7m+2>0\\2m< -1\end{matrix}\right.\) (ko tồn tại m thỏa mãn)

\(\Rightarrow\) (1) luôn có ít nhất 1 nghiệm không nhỏ hơn -1

\(\Rightarrow\) Pt đã cho có nghiệm khi \(\left[{}\begin{matrix}m\ge1\\m\le-\dfrac{1}{4}\end{matrix}\right.\)

Bình luận (3)

Các câu hỏi tương tự
H24
Xem chi tiết
ND
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DF
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết