Tồn tại duy nhất một giá trị m để bất phương trình \(x^2\le2mx-m^2+m-3\) có tập nghiệm \(S=\left[x_1;x_2\right]\) thỏa mãn điều kiện \(\sqrt{x^2_1+2mx_2+m^2-m+3}=\left|m-9\right|\). Tìm m
Cho phương trình:
\(-x^2+2x+4\sqrt{\left(3-x\right)\left(x+1\right)}=m-2\)
Tìm m để pt có nghiệm
Tìm m để phương trình sau có 3 nghiệm phân biệt:
\(\left|x^2-3x-3+m\right|=x+1\)
Tìm m để hệ phương trình có nghiệm
\(\left\{{}\begin{matrix}x^2-3x-4< 0\\\left(m-1\right)x-2\ge0\end{matrix}\right.\)
Tìm m để phương trình \(\left(m+1\right)x^2-2\left(m-1\right)x+m^2+4m-5=0\) có đúng hai nghiệm \(x_1,x_2\) thỏa mãn \(2< x_1< x_2\) .
Để phương trình \(\left|x+3\right|\left(x-2\right)+m-1=0\) có đúng một nghiệm, các giá trị của m là?
Cho hệ bất phương trình\(\left\{{}\begin{matrix}x^2-3x-4\le0\\x^2-3\left|x\right|x-m^2+6m\ge0\end{matrix}\right.\) . Tìm m để hệ có nghiệm
Cho pt \(x^4+4x^3+4\left(1-m\right)x^2-8mx+3m+1=0\). Tìm m để phương trình có nghiệm.
Cho phương trình \(\left(x^2+ax+1\right)^2+a\left(x^2+ax+1\right)+1=0\) với a là tham số. Khi phương trình có nghiệm thực duy nhất, cmr a > 2