Ôn tập cuối năm môn Đại số

H24

Có bao nhiêu giá trị nguyên m để phương trình \(x^2-4\sqrt{x^2+1}-\left(m-1\right)=0\) có 4 nghiệm phân biệt

DT
9 tháng 7 2021 lúc 9:53

 

Điều kiện xác định x∈Rx∈R.

Đặt t=√x2+1 (t≥1t≥1)

Phương trình trở thành t2−1−4t−m+1=0

⇔t2−4t=m

⇔t2−4t=m. (1)

Để phương trình có 44 nghiệm phân biệt thì phương trình (1) có hai nghiệm phân biệt lớn hơn 11.

Xét hàm số f(t)=t2−4t có đồ thị là parabol có hoành độ đỉnh x=2∈(1;+∞) nên ta có bảng biến thiên:

Dựa BBT ta thấy để (1) có hai nghiệm phân biệt lớn hơn 11 thì −4<m<−3

Vậy không có giá trị nguyên của mm thỏa mãn yêu cầu bài toán.

Bình luận (2)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết