Bài 6: Hệ thức Vi-et và ứng dụng

H24

cho phương trình x^2-(m+2)x+m=0 Tìm GTNN của biểu thức A=x13-(m+1)x12+mx1-5m

NA
30 tháng 3 2023 lúc 15:45

\(x^2-\left(m+2\right)x+m=0\left(1\right)\)

Để phương trình (1) có nghiệm thì:

\(\Delta\ge0\Rightarrow\left(m+2\right)^2-4m\ge0\)

\(\Leftrightarrow m^2+4\ge0\) (luôn đúng)

Vậy \(\forall m\) thì phương trình (1) luôn có nghiệm.

Theo định lí Viete cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m\end{matrix}\right.\)

\(A=x_1^3-\left(m+1\right)x_1^2+mx_1-5m\)

\(=x_1^3-\left(x_1+x_2-1\right)x_1^2+x_1\left(m-5\right)\)

\(=x_1^3-x_1^3-x_1^2x_2+x_1^2+x_1\left(x_1x_2-5\right)\)

\(=-x_1^2x_2+x_1^2+x_1^2x_2-5x_1\)

\(=x_1^2-5x_1=\left(x_1^2-5x_1+\dfrac{25}{4}\right)-\dfrac{25}{4}=\left(x_1-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\)

Vậy \(MinA=-\dfrac{25}{4}\).

 

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
KN
Xem chi tiết
H24
Xem chi tiết
CM
Xem chi tiết
VL
Xem chi tiết
LE
Xem chi tiết
LM
Xem chi tiết
MN
Xem chi tiết
XH
Xem chi tiết