Bài 6: Hệ thức Vi-et và ứng dụng

TT

Cho phương trình ẩnx: x2–2(m+1)x+m2–2m–3=0(1)
a) Tìm m để phương trình (1) luôn có nghiệm .
b) Tìm giá trị của m để hai nghiệm x1; x2 của phương trình (1) thỏa hệ thức: x12 + x22 – x1x2 = 28

NT
12 tháng 3 2022 lúc 7:11

a: \(\Delta=\left(2m+2\right)^2-4\left(m^2-2m-3\right)\)

\(=4m^2+8m+4-4m^2+8m+12\)

=16m+16

Để phương trình luôn có nghiệm thì 16m+16>=0

hay m>=-1

b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=28\)

\(\Leftrightarrow\left(2m+2\right)^2-3\left(m^2-2m-3\right)=28\)

\(\Leftrightarrow4m^2+8m+4-3m^2+6m+9=28\)

\(\Leftrightarrow m^2+14m-15=0\)

=>(m+15)(m-1)=0

=>m=1

Bình luận (0)
HP
12 tháng 3 2022 lúc 7:13

undefined

Bình luận (0)

Các câu hỏi tương tự
LE
Xem chi tiết
CM
Xem chi tiết
NQ
Xem chi tiết
NT
Xem chi tiết
HG
Xem chi tiết
PV
Xem chi tiết
NV
Xem chi tiết
NV
Xem chi tiết
DT
Xem chi tiết