Cho (O) tiếp xúc với 2 cạnh Ax, Ay của góc xAy lần lượt tại B và C. Vẽ dây CD//Ax. Tia AD cắt dường tròn tại M, CM cắt AB tại N. Chứng minh:
a)Tam giác ANC đồng dạng tam giác MNA.
b) AN = BN.
Từ một điểm A bên ngoài (O), vẽ tiếp tuyến AB và cát tuyến ACD. Tia phân giác của góc B A C ^ cắt BC và BD lần lượt tại M và N. Vẽ dây BF vuông góc với MN, cắt MN tại H, cắt CD tại E. Chứng minh:
a, Tam giác BMN cân
b, F D 2 = F E . F B
Từ một điểm A ở bên ngoài đường tròn (O), vẽ tiếp tuyến AB và cát tuyến ACD với đường tròn (B là tiếp điểm, C nằm giữa A và D). Tia phân giác của góc CBD cắt đường tròn tại m, cắt CD tại E và cắt tia phân giác của góc BAC tại H. Chứng minh rằng:
a) AH ⊥ BE
b) MD2=MB.ME
Các bạn giúp mik vs ạ
Cho đường tròn (O) và hai dây AB, AC. Gọi M, N lần lượt là điểm chính giữa của cung AB và AC. Đường thẳng MN cắt dây AB tại E và cắt dây AC tại H. Chứng minh tam giác AEH là tam giác cân.
Trên đường tròn (O; R) vẽ ba dây liên tiếp bằng nhau. AB, BC, CD mỗi dây có độ dài nhỏ hơn R. Các đường thẳng AB và CD cắt nhau tại I, các tiếp tuyến của đường tròn tại B, D cắt nhau tại K
a) Chứng minh \(\widehat{BIC}=\widehat{BKD}\)
b) Chứng minh BC là tia phân giác của \(\widehat{KBD}\)
Qua điểm M nằm bên ngoài đường tròn (O), vẽ tiếp tuyến AB và cát tuyến MAB của đường tròn . Tia phân giác của góc ACB cắt dây AB tại I. Chứng minh MC=MI
Cho đường tròn (O;AB). Lấy điểm C sao cho số đo cung AC=111 độ. Từ một điểm D trên OA kẻ đường thẳng vuông góc với AB cắt tiếp tuyến tại C ở điểm E, cắt AC tại I và cắt đường tròn (O) tại M và N.
a) Tính số đo góc ABC
b) Chứng minh tam giác IEC cân.
Cho nửa đường tròn tâm O bán kính R, đường kính ab chứa nửa đường tròn, kẻ hai tiếp tuyến Ax và By với đường tròn. M là một điểm bất kỳ trên nửa đường tròn. Tiếp tuyến tại M cắt Ax, By lần lượt tại C và D.
a) CMR: CD = AC + BD và \(\widehat{COD}\) vuông'
b) CMR: \(AC.BD=R^2\)
c) OC cắt AM tại E; OD cắt BM tại F, chứng minh EF = R
Từ một điểm A bên ngoài (O) , vẽ tiếp tuyến AB và cát tuyến ACD . Tia phân giác của góc BAC cắt BC và BD lần lượt tại M và N . Vẽ dây BF vuông góc với MN , cắt MN tại H , cắt CD tại E .Chứng minh:
Tam giác BMN cân và FD^2=FE.FB