Bài 2. TỔNG VÀ HIỆU CỦA HAI VECTO

YC

Cho lục giác đều ABDEF , M bất kì . Khẳng định nào sao đây đúng?

\(A.\overrightarrow{MA}-\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}=\overrightarrow{MD}-\overrightarrow{MF}\)

B. \(\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}+\overrightarrow{MB}=\overrightarrow{MD}+\overrightarrow{MF}\)

C. \(\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}=\overrightarrow{MD}+\overrightarrow{MF}\)

D . \(\overrightarrow{MA}-\overrightarrow{MC}-\overrightarrow{ME}-\overrightarrow{MB}=\overrightarrow{MD}+\overrightarrow{MF}\)

AH
30 tháng 9 2020 lúc 10:06

Lời giải:

Gọi $O$ là tâm lục giác đều. Khi đó $AD, BE, CF$ giao nhau tại trung điểm $O$ của mỗi đường.

$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}-(\overrightarrow{MD}+\overrightarrow{MF})$

$=(\overrightarrow{MA}-\overrightarrow{MB})+(\overrightarrow{MC}-\overrightarrow{MD})+(\overrightarrow{ME}-\overrightarrow{MF})$

$=\overrightarrow{BA}+\overrightarrow{DC}+\overrightarrow{FE}$

$=\overrightarrow{CO}+\overrightarrow{OB}+\overrightarrow{BC}=\overrightarrow{CB}+\overrightarrow{BC}=\overrightarrow{0}$

Do đó:

$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB} =\overrightarrow{MD}+\overrightarrow{MF}$

Đáp án C

Bình luận (0)
 Khách vãng lai đã xóa
CD
17 tháng 8 2020 lúc 10:45

Lời giải:

Gọi $O$ là tâm lục giác đều. Khi đó $AD, BE, CF$ giao nhau tại trung điểm $O$ của mỗi đường.

$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}-(\overrightarrow{MD}+\overrightarrow{MF})$

$=(\overrightarrow{MA}-\overrightarrow{MB})+(\overrightarrow{MC}-\overrightarrow{MD})+(\overrightarrow{ME}-\overrightarrow{MF})$

$=\overrightarrow{BA}+\overrightarrow{DC}+\overrightarrow{FE}$

$=\overrightarrow{CO}+\overrightarrow{OB}+\overrightarrow{BC}=\overrightarrow{CB}+\overrightarrow{BC}=\overrightarrow{0}$

Do đó:

$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB} =\overrightarrow{MD}+\overrightarrow{MF}$

Đáp án C

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HP
Xem chi tiết
SA
Xem chi tiết
CC
Xem chi tiết
XH
Xem chi tiết
TN
Xem chi tiết
AT
Xem chi tiết
PM
Xem chi tiết
HT
Xem chi tiết
XH
Xem chi tiết