Bài 12: Hình vuông

NC

Cho hình vuông ABCD . Trên cạnh BC lấy điểm E , trên tia đối của tia DC lấy điểm F sao cho BE = DF .

a) Chứng minh ΔAEH vuông cân tại A

b) Gọi H là điểm đối xứng của A qua EF . Chứng minh AEHF là hình vuông.

NT
10 tháng 11 2023 lúc 22:50

a: Sửa đề: ΔAEF vuông cân tại A

Xét ΔADF vuông tại D và ΔABE vuông tại B có

AD=AB

DF=BE

Do đó: ΔADF=ΔABE

=>AF=AE và \(\widehat{DAF}=\widehat{BAE}\)

mà \(\widehat{BAE}+\widehat{DAE}=90^0\)

nên \(\widehat{DAF}+\widehat{DAE}=90^0\)

=>\(\widehat{FAE}=90^0\)

Xét ΔAEF có \(\widehat{FAE}=90^0\) và AE=AF

nên ΔAEF vuông cân tại A

b: Gọi giao điểm của AH với EF là M

H đối xứng A qua EF

=>EF là đường trung trực của HA

=>EH=EA và FH=FA

mà AH=AE

nên EH=EA=FH=FA

Xét tứ giác AEHF có

AE=HE=HF=FA

nên AEHF là hình thoi

Hình thoi AEHF có \(\widehat{FAE}=90^0\)

nên AEHF là hình vuông

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
NK
Xem chi tiết
TB
Xem chi tiết
SK
Xem chi tiết
LC
Xem chi tiết
NH
Xem chi tiết
PH
Xem chi tiết
MH
Xem chi tiết
TS
Xem chi tiết