Cho hình vuông ABCD. Trên cạnh AD lấy điểm F, trên cạnh DC lấy điểm E sao cho AF = DE.
Chứng minh rằng AE = BF và \(AE\perp BF\) ?
Cho hình vuông ABCD. Trên cạnh DC lấy điểm E, trên cạnh BC láy điểm F sao cho DE = CF.
Chứng minh rằng AE = DF và \(AE\perp DF\) ?
Cho hình vuông ABCD . Trên cạnh BC lấy điểm E , trên tia đối của tia DC lấy điểm F sao cho BE = DF .
a) Chứng minh ΔAEH vuông cân tại A
b) Gọi H là điểm đối xứng của A qua EF . Chứng minh AEHF là hình vuông.
Cho hình vuông ABCD. trên tia đối của tia ba lấy điểm E. đường thẳng EC cắt AD tại F, AC cắt BF tại O. chứng minh EO đi qua trung điểm của AF
Cho hình vuông ABCD. Trên AB, AD lấy điểm E,F sao cho AE=DF. CMR: DE⊥CF.
Cho hình vuông DEBC. Trên cạnh CD lấy điểm A, trên tia đối của tia DC lấy điển K, trên tia đối của tia ED lấy điểm M sao cho CA = DK = EM. Vẽ hình vuông DKIH (H thuộc cạnh DE).
Chứng minh rằng ABMI là hình vuông ?
Cho tam giác ABC có AB = 8cm AC = 12cm
Trên cạnh AB lấy điểm D sao cho BD = 2cm trên cạnh AC lấy điểm E sao cho AE = 9cm.
Chứng minh AADE đồng dạng A ABC.
Cho tam giác ABC vuông tại A. Tia phân giác của góc BAC cắt cạnh BC tại D. Vẽ DE vuông góc với AB ( E thuộc AB ) và DF vuông góc với AC (F thuộc AC ). Chứng minh tứ giác AEDF là hình vuông
Cho hình vuông ABCD. Gọi E là trung điểm CD, F nằm trên cạnh BC sao cho BF=3FC. Chứng minh EF=1/2 AE. (gợi ý: Gọi I là trung điểm của BC, c/m EF =1/2 DI và DI = AE)